GCC – The Gnu C Compiler

Introduction

Most compilers are written specifically for one target architecture (i.e. processor & Operating System), and one language. However, most of the compiler’s code is neither language nor architecture dependent, thus it makes sense to modularise the compiler in order to maximise the ability to re-use code. GCC, the Gnu C Compiler has been developed in this way, so that many different programming languages may produce many types of target code.

Porting

Porting a compiler for a specific architecture requires detailed knowledge of that architecture, for example, how C types map to bits and bytes, how the memory is structured, and how functions are called and how values are returned. The architecture must be described in detail to GCC using a combination of C and a specialised machine description language.

GCC is aimed at processors with 32-bit registers, but may be ported to those with 16-bit registers. It is not, suitable for accumulator architectures. The memory size is limited to what can be addressed from the register, however I doubt this will affect us with FPGAs.

The Compiler

The GCC compiler itself is essentially just the program that translates from a programming language into assembly language for a given architecture – nothing more. Other elements exist as separate programs, for example the preprocessor, or the assembler – all essential parts of the compilation process, but it is important to make the distinction between these and the compiler itself.

